Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040111

Meeting #26, Atlanta, US, 16-20 February 2004

Source:
Lucent Technologies (contact:unmehopa@lucent.com)
Title:
Design Considerations for Parlay HA Solutions
Agenda Item:

Document for:
Discussion

Category:

Work Item ID:
3GPP R6 / Parlay 5
Doc Summary:
Design Considerations for Parlay HA Solutions

Specs involved:

1 Introduction

Over several of the recent CN5 meetings there have been a number of contributions espousing the need to support High Availability (HA) as a part of overall Parlay-based solutions (for Client, Framework, and Service interactions). Proposed solutions for HA are largely divided into two sets, first are those solutions that perceive required changes to the Parlay APIs in order to support HA, second are those solutions which feel the Parlay APIs are largely sufficient and depend on the underlying middleware and individual gateway implementations for HA support.

As addition background information, an input liaison from SA1 to CN5 indicates that a requirement has recently been added for OSA that reads as follows:

“OSA shall allow Service Capability Features to communicate with backup instances of an application in the case where the primary application instance is not responding. This shall be possible also when the primary and backup
 instances of the application are physically located in different locations.”

The letter of this requirement, which refers solely to SCFs communicating to client applications, is largely met by the existing APIs through the setCallbackWithSessionID() method. However, we do concede that there is a need for further clarification about how HA should be accomplished in general including Client/Framework and Client/Service interactions.

2 Idealism

Before delving into further discussion, let us be idealistic for a moment. In most object-oriented solutions for open APIs, a unifying goal is to provide the end-user with a simple set of interfaces (objects and operations on those objects) that with minimal complexity allows him to perform operations on that object without having to know the underlying details and complexities of how that object may accomplish its tasks.

This is in essence the goal behind the Parlay APIs, which were intended to give Client Applications simple, clear APIs for accessing complex network capabilities. While some knowledge of the network intricacies is required, the OSA Gateway intentionally hides many of these details from the Client Application.

If simplicity is indeed a goal, then the optimum approach is to allow only a single interface for a given relationship and have that interface suffice for all interactions. Within the Parlay context this translates into a single Access Session for a Client, a single Service Session for each service used by said Client, and a single registration between each Service and the Framework.

[image: image1.wmf]Application

Service

Framework

From the end-user’s perspective (with the end-user being the Client application in the case of Service method invocations, or conversely the Service in the case of Client Application call-backs) this single interface should not give any indication whether the underlying infrastructure provides redundancy, failover etc. The end-user does not and should not have to care about this.

For example, when a particular Client Application uses a given Service, the interface provided to the Client for this purpose should provide access to the underlying service and nothing more. The Client need not be concerned with how the given method invocation is reaching the Service, but merely whether its attempted operation is successful or not.

Similarly, the Service should not need to worry about the implementation of the client infrastructure in providing a callback response. A single Client Application interface should suffice for sending the notification. Granted this is an argument which opposes the current setCallbackWithSessionID() paradigm, which may not have been introduced if this principle of simplicity were applied..

This solution yields the highest degree of interoperability because neither the client applications nor the service make any assumptions about HA. They interact in the same way regardless of whether the underlying gateway supports HA or not. The complexities of the underlying implementations remain hidden from each entity by the single interfaces.

[image: image2.wmf]Framework

Services

Application

This implies that the responsibility of ensuring appropriate session and state information for each entity is shared across its sub-components resides completely within the implementation space of that entity (represented by the dotted lines). This requires that the Service, Framework, or Client implementation relay this information to those components and appropriate data and networking changes within the entity are made to ensure that the single interface concept remains viable.

2.1 Unrealistic?

There is probably little disagreement that a solution based on single interfaces is ideal in cases where infinite time and resources are available to each Gateway and Client Application provider. Unfortunately neither time nor resources are abundant in practical realizations of the OSA APIs, hence the current quandary.

Proponents of a middleware-based solution to the HA problem feel that existing tools and capabilities can yield interoperable HA solutions within the existing APIs and that the standard already contains constructs and patterns to support HA. They would argue that this ideal is not unrealistic and can be realized now or in the near future.

Proponents of a solution based on API changes argue that currently available tools (i.e. CORBA, FT-CORBA, etc.) are not mature or widely adopted enough to provide a solution that is both affordable and truly interoperable. Thus they would argue that the ideal is currently unrealistic and steps must be taken now to account for these deficiencies within the API in order to meet the needs of customers who are asking about highly-available OSA Gateway solutions in RFIs and RFPs.

3 Current Proposals

As has been indicated in prior documents and discussions, Lucent advocates the position of a middleware-based HA solution in conjunction with capabilities in the existing APIs. It is an area where gateway vendors can provide product differentiation and at the same time maintain interoperability by developing creative solutions that provide HA within the confines of existing technologies.

The following sections are comments on current and past CN5 proposals from AePONA and IBM and contain some comments and recommendations on reconciling existing differences of opinion.

3.1 N5-040044 Recommendations on HA changes for OSA

Comments are based on sections within this document.

3.1.1 Section 1 – Overall Description

As mentioned in section 1 of this document, the solution proposed in N5-040044 is far more reaching that what is necessary to meet the requirement put forth from SA1. However, we do acknowledge the excellent content of this contribution and feel the matter should continue to be discussed in detail.

3.1.2 Section 2 – Problem Description

One of the limitations of specifying HA through the API is evident here, specifically that it is difficult to express HA operations in the API without some implication of the underlying implementation. The notation of only two callbacks (originated from the specification itself and not this particular proposal) implies a pair-wise solution and fails to support various possible cluster-based architectures.

Recommendation: If API changes are made, any change must not limit the underlying HA solution. The notions of primary/backup, active/standby, dual interfaces etc. must all be left out of the specification as they imply specific implementations.
The notion of recovery after failure
 and particulars of the state that an entity is in after such a failure is worthy of discussion and needs further clarification within the standard. However, it is only loosely associated with high-availability (which is the need for an interface to be constantly available) and should thus be discussed separately.

Recommendation: Partition discussions on recovery into a separate item. It is possible that the solution to HA may involve an API change and the solution for recovery may not, or vice versa. Include IBM’s notion of “Profiles” in this discussion to indicate degrees of recoverability as an informative addition to the specification.

3.1.3 Section 3 – Middleware Capabilities

This particular section touches on the core issue of the overall debate, whether existing technologies or existing technologies plus added vendor specific capabilities along with the existing APIs have the ability to provide the ideal solution outlined previously in section 2. Various contributions appear to have differing opinions on this and the issue needs concrete resolution.

Recommendation: Create an email sub-group to investigate the current state of the middleware technologies recommended by the standard (CORBA, SOAP, etc.) and generate a report of their current state and feature content given back to CN5. Use this information at a subsequent meeting to determine if API changes are truly warranted.

Additionally, the contribution concedes that “Such a level of communication association is not directly supported by CORBA and therefore vendor proprietary solutions would be required, and would need be supported either side of the API.”

This is true, however Lucent would argue that vendor proprietary solutions are appropriate and can be implemented within the confines of each functional entity so that their proprietary nature is only visible to their own sub-components and not external entities. For example, a vendor could build a complex architecture for an SCF or the Framework that provided redundant support for CORBA IORs and was able to distribute requests across multiple sub-components to provide an overall highly-available entity.

3.1.4 Section 4 – Motivation for Non-Middleware Capabilities

This section outlines the difficulties and complexities in building a middleware based solution and reaches the conclusion that “a purely middleware solution cannot provide a viable HA solution on its own.”

Lucent feels that such a solution is possible, but admittedly complex. The fact that the problem is difficult to solve is not justification for pushing a solution into the API. This is a place where gateway vendors should be allowed to differentiate themselves.
3.1.5 Section 5.1 – Visibility of Multiple Application Instances

This section presents two possible concepts for supporting multiple application instances for highly available callbacks and for associating these instances with Framework access sessions.

Both of these approaches break a Client Application down into a set of sub-components (multiple instances and in the second case a Client Application Framework) to support HA. In the first case, an access session is essentially created with each Client instance and the Framework is responsible for managing and tracking each instance, determining which instances are viable, performing integrity management, etc. In the second case, similar separate instances are created, but instead all are under the control of a Client Application Framework that then presents a single, unified view to the OSA GW Framework.

Case 1 has been discussed in previous meetings and submissions. Earlier comments in support of middleware-based and existing API based solutions within this document apply here. The API in combination with vendor specific capabilities is largely sufficient for handling HA issues and applying a general pattern to the entire standard is not appropriate. Shortcomings should be dealt with on a case by case basis.

Case 2 is intriguing in that it appears to apply a similar middleware approach as suggested within the solution in section 2, except a need is still seen for API changes.

Perhaps the model could be extended further to the following:

[image: image3.wmf]FW

SCS

Mgr

App

App

Sub

-

part1

App

Sub

-

part2

App

Sub

-

part3

Application

Here the Client Application appears as a single entity to the Framework and SCS. Its HA complexities are pushed into the “App” component, which manages the interactions of all sub-components with the Framework and SCS Manager, instead of into the APIs between the Application, Framework, and SCS Manager. This would require the “App” component to provide fault-tolerant interfaces of its own and thus it could actually consist of multiple processes or nodes. In this way, the Application developer can opt for a simple solution or a complex one with HA using the same API, depending on his/her needs.

3.1.6 Section 5.2 - Application Failure and Recovery – Refresh Existing Notification Callbacks

As mentioned previously, application recovery should be treated as a related but separate topic and addressed as such. Applications will have a need to recover service sessions regardless of whether a HA solution is present.

The concept of refreshing callbacks has merit and seems to have a place in either type of HA solution so we will not cover it further.

3.1.7 Section 5.3 – Service Failure Recovery – Session abort

We agree that the API requires clarification on this issue and that the ability to globally abort sessions owned by an application sounds like a reasonable idea. However, a solution that precludes certain SCS architectures should be avoided.

3.2 High Availability Implementation Approaches for OSA – Submitted by IBM

The following section is in reference to a document circulated by Joe McIntyre of IBM entitled “High Availability Implementation Approaches for OSA”. There are two concepts from this document that we would like to comment on.

3.2.1 Independent Interfaces

The proposal suggests HA-based API changes for OSA to be applied in manner similar to that of the Integrity management interfaces, in that they are defined separately from other Framework interfaces and are entirely optional.

Recommendation: While the need for such interfaces is still unclear, if they must be incorporated into the APIs, Lucent favors this approach. This would allow vendor’s existing middleware-based HA solutions to continue and would provide an optional avenue for those who wish to solve the problem via the API.

3.2.2 Profiles

The proposal advocates the use of informative Profiles that allow a gateway to indicate what solutions or underlying technologies it uses to Client Applications so that they can match by Profile to determine interoperability.

This concept is especially applicable if the recommendation from 3.2.1 is accepted. Client Applications would need a way to determine what the capabilities are supported by the gateway and a Profile could supply this information. It is worthwhile to note that this concept could also apply in the earlier discussions of Client and Service Recovery and could be used to indicate different levels of recoverability (i.e. NO_STATE, ALL_STATE_AND_SESSIONS, NOTIFICATIONS_ONLY, etc.)

We do note the danger in the proliferation of profiles and the complexities that this would add for services and client applications that wish to support multiple profiles.

Recommendation: The notion of Profiles has benefits and deserves more investigation. Special attention should be paid to ways to keep the number of Profiles from becoming unmanageable.
4 HA Capabilities within the Existing Standard

The following section outlines at a high level some potential methods for supporting HA within the current APIs.

4.1 Multiple Service Managers

The current specification allows client applications to obtain service sessions with multiple services of the same type concurrently. In most cases, this allows a client application to obtain as many service sessions as it deems necessary to support a desired level of availability. These service sessions can be configured identically to provide the same service capabilities to the client application.

[image: image4.wmf]FW

SCS

Mgr

1

App

SCS

Mgr

2

SCS

Mgr

n

…

Transactions that fail on a given SCS Mgr instance can be retried on other instances. Additionally, the Integrity Management interfaces are in place to give Clients the ability to monitor their service sessions for just such a purpose. This approach works well for those SCFs that offer relatively stateless operations.

Admittedly, there are SCFs that have more stateful information or have other conditions that would prevent a client from creating multiple concurrent service managers. Some examples of this are as follows:

· Charging and its charging session concept

· Call Control and the difficulty in supporting overlapping interrupt mode notifications

· Data Session Control and the difficulty in supporting overlapping interrupt mode notifications

Recommendation: Select areas where the client’s use of multiple service managers is not feasible and address HA specifically within those SCFs as opposed to applying a general pattern that affects all the APIs.

4.2 Access Session Recovery

The existing Framework interfaces are sufficient to support clients that have multiple service sessions as outlined in section 4.1. The loss of the access session is not a service session impacting failure, so it does not necessarily require high-availability. The Framework can persist relevant service session information so that a client can quickly recover a failed access session, establish the appropriate callback interfaces, and continue to manage service sessions without actually experiencing any service interruption.

Additionally, a highly available Framework ensures that a client can always obtain an access session and resume management of its service sessions.

5 Summary

The Parlay standards already contain constructs and patterns in which HA solutions can be implemented. These capabilities can be augmented by vendor-specific capabilities that provide further HA capabilities while remaining interoperable and continue to allow vendors opportunities to differentiate their implementations. Shortcomings that arise in particular SCFs, such as SCFs with interrupt mode notifications, and that require changes in the API, should be dealt with on a case-specific basis and not with a general pattern that is applied ubiquitously across the standard. And by no means should a change proposed to the API require or even imply a particular implementation choice.

Applying such changes to the APIs to support functions like HA sets a dangerous precedent. One could make a similar argument that changes are needed to support load balancing for high capacity SCFs. Methods could be added to support various schemes for distributing load across SCSs to meet particular implementations, but again the API is not the place for these details and there are existing constructs for managing load within Integrity Management. How could this and subsequent changes for other implementation related issues be refused as additions to the API if changes were made to accommodate HA solutions? The door would be open for large-scale complication of the basic interfaces and the responsibility and complexity of the Framework would increase substantially.

� We note here that we take exception to this wording within the given requirement. The term “primary and backup instances” implies a paired HA configuration. Additionally, it could be interpreted as requiring an active-standby failover configuration. Neither of these implementation level details is appropriate at this level of requirements. However, this will be addressed in the appropriate forum.

� We do acknowledge that middleware-based HA solutions can create interoperability issues at lower layers (e.g. ORB vendor HA solution compatibility), but these can be overcome by gateway vendor specific solutions as needed while remaining interoperable.

� Note that we consider recovery after failure (or ‘crash’) as being separate from a failover and stateful recovery that might exist in a solution that uses failover from an active to a standby instance to support HA. The latter concept is relevant to HA, but only in the context of a specific gateway implementation choice (i.e. active/standby), and should not be reflected in the standard in a normative manner.

