joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040044

Meeting #26, Atlanta, GA, USA, 16-20 February 2004

Source:
Eamonn Murray, AePONA
Title:
Recommendations on HA changes for OSA

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Discussion & Decision
1. Overall Description:

SA1 have provided an input liaison to this meeting, S1-040147, in which the requirement for support of HA in OSA has been clarified by SA1, and CN5 have been requested to investigate whether such support is available within the current API, or to introduce support for this requirement in Release 6.

This document is intended as an input discussion document, the prime purpose of which is to highlight and describe the type of changes that are believed to be required within the OSA API in order to fulfil this requirement. It is hoped that by presenting the materials in this contribution for discussion, agreement on those areas of the OSA API that require modification can be accomplished during this meeting. Suitable contributions to implement agreed modifications shall then be provided to the next CN5 meeting in Miami (CN5#27), and in time for Release 6 publication.

2. Problem Description:

The current OSA API specifications exhibit limitations with respect to adequately supporting HA deployments. Examples of such limitations (not exhaustive) include:

· It should be possible to run multiple identical application images. Those SCS service managers that support event criteria allow 2 callbacks to be registered. The framework however does not support an equivalent view.

· It is not currently possible to reset or refresh application callbacks related to event criteria, in the event of an application crash and restart.

· In the event of failure and restart of certain SCSs, recovery of the SCS may result in excessive messaging to indicate failure of individual sessions.

Whilst some of the limitations highlighted may be reduced through the use of appropriate middleware high availability solutions, the design and logic of the API itself presents problems that a purely middleware based solution cannot address, and therefore enhancements or clarifications to the API are required.

3. Middleware Capabilities:

As brief background to the discussion, an overview of CORBA middleware features that may be beneficial to the OSA APIs is provided below. Note only CORBA has been considered for this discussion, as this is both the dominant choice of middleware between Gateways and the Application domain, and the FT CORBA activity within OMG ensures that the HA features of this middleware are in advance of alternative middleware options. Support for the features mentioned below may vary according to CORBA products and vendors.

At a simplistic level, CORBA views HA as a collection of replicated objects employing stateless load balancing and failover to ensure fault tolerance. Such an approach is well suited to discrete problems, however it is not sufficient for communications in which association of entities or state is required, such as many of the OSA communications. CORBA features that enable HA include support for persistence of objects and multiple-IORs for object references. The approach uses;

· the TAG_ALTERNATE_IIOP_ADDRESS component in IORs, to provide persistence for CORBA infrastructure and enable client redirection

· the IIOP LOCATION_FORWARD message, for redirection of invocations and support of persistent POAs.

Within an OSA implementation, the features above may be applied to those components that may require persistent references and callbacks to be supported. However the CORBA features do not support any static or ‘sticky’ bindings and merely implement a redirection to an alternate object reference. Therefore the CORBA features may be applied to the OSA API where ‘sticky’ communication sessions are not essential in order to achieve a level of failover (to standby) support. For example it would be possible to failover all new communication sessions to a new IpMgr or IpAppMgr impl class.

To achieve greater resilience and operate in a dual or multi-active deployment configuration the CORBA load distribution feature could also be used. However, the ‘sticky’ sessions exhibited by the OSA API, including the state and association between the client and server, would also need to be taken into consideration. For example, in the event of failure new communication sessions could still be redirected to an alternate object as above, however in normal operation additional implementation would be required to ensure that communication sessions remain associated with the correct objects. Such a level of communication association is not directly supported by CORBA and therefore vendor proprietary solutions would be required, and would need to be supported either side of the API.

4. Motivation for Non-Middleware Capabilities:

The middleware discussion above does not consider the integrity of the OSA conceptual model (Framework, Application Client, SCS) nor the defined behaviour of the API, rather only the ongoing communications.

In the case of the OSA model, considering that it is likely that communication between Framework and Application, and Application and Gateway may take place at differing frequencies, then failure of an application may result in loss of synchronisation between all three parties. For example the middleware may resolve the application failure from the SCS perspective to an alternate object, however the Framework may be resolved to yet another object.

Note this model integrity may be further complicated when considering the role of the Framework and the possible need to have visibility of the ‘real’ physical deployment as opposed to a conceptual view in order to provide an element of policy/management control. Further considerations with respect to ensuring the integrity of the model would also include whether applications or application instances could share a common application Framework in a HA configuration and therefore whether the Gateway Framework or Application Framework is responsible for managing the physical realisation or not.

The APIs themselves also exhibit behaviour or functionality that is not a middleware related HA issue, rather a design issue for the APIs that present limitations to the overall HA proposition. These are largely related to synchronisation upon recovery and are covered further later.

In both the cases outlined above, a purely middleware based solution cannot provide a viable HA solution on its own. Rather synchronisation of the model itself and the use of the APIs is essential. What follows is an overview of some suggested examples of API changes that may be required.

5 . Suggested API Modifications to support HA:

5.1 Visibility of Multiple Application Instances.

Currently it is possible for an application to register additional callbacks with some SCS managers in order to provide the SCS with visibility of a failover application instance. Where this is specified in the API it is described that this feature is intended for use to aid application high availability. This scenario is represented in the figure below, in which A and A’ are intended to represent identical application instances (each with their own Application framework interfaces). As the Gateway framework only currently allows a single access session with an application, it is assumed that application A has established an access session with the Framework and has provided application A’ with the SCS manager reference.

[image: image1.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr

In the event that Application A fails, the SCS manager may continue to provide service via Application A’. However at this point the Gateway Framework is not aware of application A’, and in the absence of visibility of A’ may terminate access session, service level agreement etc. Therefore the ability of the SCS managers to support multiple application callbacks needs to be extended to allow synchronisation between the Application, Framework and Service.

This could be accomplished as shown below.

[image: image2.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr

This figure is intended to represent the case where each discrete application instance establishes an independent access session with the Gateway Framework. Therefore when Application instance A now fails, both the SCS and Gateway Framework can independently failover to the standby application and continue to guarantee the integrity of the OSA model. The Framework can continue to re-authenticate and carry out integrity management activity on the application instance being used by, and making use of the gateway SCS.

In order to support the approach above it shall be necessary to modify the Framework API functionality to support unique identification of application instances. This shall require modification in DomainIDs and the Gateway framework implementation shall be required to correlate such instances as a single application. In addition, the API must ensure that both the Framework and SCS managers have the same view and ordering of application instances. The endAccess functionality shall also require modification to discriminate between application instances if desired. Recovery of a failed application instance, previously known to the Framework and SCS should also be supported. (These ideas are covered in greater technical detail in previous contribution, N5-030192 submitted to CN5#23 in San Diego).

An alternative approach could be to prescribe an alternative application architecture in which a single application Framework may be common to all application ‘service logic’ instances. In this case a common framework is shared by each application instance and a single access session for the application is established with the Gateway Framework (as currently). This is represented in the figure below.

[image: image3.wmf]

Appn

A’

FW

SCS

Mgr

Appn

FW

Appn

A

Application

This approach allows the Framework to continue to communicate with the Application Framework in the event that a single application instance, A for example, has failed. It assumes that a resilient middleware based Framework implementation exists in the client domain, and that individual elements or processes within the overall application can fail independently (ie: if App A fails it doesn’t cause the App FW to also fail, or if it does a middleware solution can recover an App Framework that is both transparent to the Gateway Framework and aware of App A’).

This approach would require less modification to the existing API, however some modification is still required to ensure integrity of the OSA model. The Application Framework must be able to determine which application instance is being used by the SCS manager. As there is no direct communication between the SCS manager and Application Framework, informational messages must be supported between SCS, Gateway FW and App FW to ensure synchronisation. The Application Framework may then use some internal mechanism (dotted lines) to ensure that any Gateway Framework requests for application information are resolved to the correct and current application instance in use. This is essential to ensure that the OSA integrity management capabilities can be supported (e.g Heartbeat, Load, Fault Mgt).

Note it is possible that the second approach above could also be extended to the realisation of SCSs, in which multiple SCS processes can share a common Framework component to provide a single logical SCS, however this is not essential to support HA and is not discussed further.

5.2 Application Failure and Recovery – Refresh existing notification callbacks.

In order to support application high availability, it is necessary to ensure that an application instance may fail and thereafter recover all provisioned interfaces and callback references, and in so doing loss of service or change of behaviour in another application instance does not result. Therefore when the application instance recovers it must be possible to update and refresh the callback references.

The current methods to modify notifications only allow criteria modification rather than callback references to be modified.

Currently, refreshing callbacks requires disabling and re-enabling, and this is done according to assignmentID (which is common to the notification criteria rather than the callback reference). Disabling notifications based on current assignmentID principles will therefore impact the failover application instance and is not appropriate. Alternatively the application may simply enable all notifications as previously. However in this case the existing behaviour of methods used to enable notifications shall require clarification (how to ensure overwrite the invalid references), and depending on the complexity of the application and number of notification criteria, this may add significant delay to application recovery.

Alternatively it is suggested to introduce functionality to allow application instances to explicitly update the callback references to previously provisioned criteria. In order to support this, unique assignment Ids shall be required, and additional methods introduced. (This idea is covered in greater technical detail in previous contribution, N5-030192 submitted to CN5#23 in San Diego).

5.3 Service Failure recovery – Session abort.

Several SCSs exhibit behaviour in which, in the event of network or gateway failure, an abort message is sent to the application in order that the application can free resources. (Services include, Call Control, User Interaction, Data Session Control, Charging). Such an approach is not scalable for services simultaneously supporting thousands of ongoing sessions.

In the case where an SCS has many thousands of ongoing sessions, in the event of SCS failure clearly all ongoing sessions with that SCS are lost. Upon recovery the SCS can elect to do the following;

· Ignore the previous SCS and accept no knowledge of previous sessions. The application shall therefore be required to apply housekeeping.

· Invoke an aborted message to the application for each session that was previously in existence.

To support the first option would require that textual clarification be added to the APIs to indicate SCS behaviour in the event of failure and restart, and ensure that application developers do not rely upon individual receipt of ‘aborted’ calls.

To support the second approach shall result in significant additional messaging across the API, severely impacting performance and with little benefit to either gateway or application. Currently if supporting the second option, the application would await an aborted indication for each individual session.

Alternatively a global abort mechanism could be introduced in which all outstanding sessions to an SCS could be aborted upon restart, an ‘abortAll’. However careful consideration is required before introducing such functionality, particularly in light of middleware behaviour that may be evident also, and the physical implementation of SCSs.

Consider the diagram below,

[image: image4.wmf]

Appn

SCS

hot

SCS

cold

In this configuration, the SCS is realised as a hot/cold standby implementation. Therefore in the event of the active SCS failing, traffic may be redirected to the standby node. This can be achieved transparently to the application via the middleware (therefore the application sees only a single SCS and therefore interface reference). Upon initialisation, the standby SCS could block new sessions and carry out a global abort to allow the application to flush lost sessions. When the failed SCS recovers it shall enter the cold state and await failover before communicating with the application.

If on the other hand the SCS implementation was such that multiple active process instances were available, such as shown below, a global abort of sessions would no longer be possible. It as assumed in this case that the multiple active SCS processes share a common framework interface and are viewed by the framework as a single logical SCS. (Therefore the application only has a single SCS manager interface).

[image: image5.wmf]

Appn

SCS

1

SCS

2

SCS

Proxy

In the case where SCS process 1 were to fail, all new communication for SCS1 could be transferred to SCS 2, which is also servicing traffic. It would not be possible therefore to carry out a global abort for sessions within the SCS when SCS 1 recovers, without equally impacting SCS2. In order to support a global abort in this configuration some unique identification of SCS process would be required in order that the application could apply housekeeping only to relevant sessions. (Note: such a configuration depicted above may also require identification of SCS process to ensure integrity and synchronisation with the Framework. Whilst this may be acceptable for the Framework, it is not considered suitable to publish SCS realisation and architecture across the API to the application, as interoperability problems are sure to arise).

Finally, if multiple SCS managers of the same type were used by the application, each with their own SCS-FW interface and ServiceLifecycleManagement, then multiple active service deployment can be supported. However in this case, the application will have unique manager references, service level agreements etc with each SCS, and it would be the application and not the middleware that would be responsible for load distribution etc. Each individual SCS could operate in a hot/cold standby configuration and therefore a global abort mechanism could be supported within each.

In summary therefore, introduction of a global abort solution may prevent certain physical implementations of SCS from being possible, without the introduction of additional identification of such implementation details being visible to other entities in the OSA model. If such physical implementations are contrary to the API in other ways (FW-SVC integrity, SLA etc), then a global abort mechanism may be introduced and would provide an improved mechanism for SCS failure and recovery and synchronisation with the application.

The existing discrete abort for each individual sessions is cumbersome and inefficient in cases of complete SCS failure, resulting in significant Gateway to application messaging to signify the end of each session. In the absence of a global abort therefore the problem of application housekeeping upon SCS failure should not be addressed using the discrete abort and the APIs should be clarified to indicate this.

_1137482530.doc

Appn

A

Appn

A’

FW

SCS Mgr

_1137576768.doc

SCS

Appn

SCS

1

SCS

2

Proxy

_1137576790.doc

Appn

SCS

hot

SCS

cold

_1137484609.doc

Appn

A

Appn

A’

FW

Application

SCS Mgr

Appn

FW

_1137482179.doc

Appn

A

Appn

A’

FW

SCS Mgr

