High Availability Implementation Approaches for OSA
Joe McIntyre, IBM Corporation

8 January 2004

Introduction

Providing solutions that meet High Availability requirements defined in RFI/RFP/etc documents requires that the elements in the solution meet a set of requirements independently and when deployed together. There are a number of ways to achieve these requirements, each with specific advantages and disadvantages.

This document provides some alternatives for options available to OSA for addressing High Availability, and what impact each alternative has on the specification definition, technology outputs and application writers using OSA.

OSA Requirements

The OSA specifications have some specific goals which must be respected including,

· Technology neutrality at the specification level, allowing the specifications to be implemented with different technologies

· Interoperability between vendors implementing each side of a solution (application side and service side)

· Flexibility, with freedom to innovate and differentiate on solutions developed using OSA

Implementation Approaches

Implementation of High Availability features can be performed in a number of ways,
· In the absence of any specification guidance or definition, vendors can use common middleware that supports HA capabilities, or proprietary interfaces

· Framework and Service interfaces and/or semantics can be extended to provide explicit interfaces or semantics that provide HA support

· Independent interfaces can be defined that provide HA support that may be used across interfaces as adjuncts to OSA, not changing OSA interfaces or semantics
In addition, profiles can be defined that allow application side and service side implementations to follow an approach that can be used by a peer that supports a compatible profile.

Approach 1: No Guidance or Definition

By providing no guidance or definition of HA interfaces, the first goal (technology neutrality) and third goal (flexibility) are met, but interoperability depends on each application vendor creating a different application to work with each service implementation that uses a different HA approach.

For those vendors that do not choose an underlying technology that provides HA capability, they may provide their own interface extensions or semantics to provide these capabilities.

In practice, the implementation of HA in existing solutions is uneven – with few, if any, multi-vendor solutions offered on a middleware solution that supports HA as a feature. This is largely driven by the lack of vendor products that support HA standards in multi-vendor deployments, and lack of complementary standards that include HA support.
Approach 2: Explicit Interface or Semantic Extensions
By providing explicit extensions to interfaces, or providing semantics for implementation that support HA capabilities; the first goal (technology neutrality) is mostly met – the extensions or semantics are unnecessary for some implementations, the second goal (interoperability) is met since HA will work with any underlying technology, and the third goal (flexibility) is mostly met – the vendor is still free to choose another mechanism for implementation, but applications will not gain as much advantage from the more robust underlying technology implementation.

Support for the HA API semantics defined in the Call Control service for notifications is implemented in many implementations, as is the setCallbackWithSessionID method. Thus, where these extensions have been provided they have been used in implementation. This is in large part because the two options in the first approach are impractical.
Approach 3: Independent Interfaces for High Availability

By defining an independent set of interfaces specific to High Availability, similar to the approach taken for integrity management, but also applicable to service implementations, the implementation of HA capabilities can be separated from service and application implementation. This meets the first goal (technology neutrality), as the interfaces would not be technology specific and would need not be implemented if the underlying technology already supported the capability. It meets the second goal (interoperability) since the interfaces would work with any underlying technology. It meets the third goal (flexibility) by allowing the use of a middleware based solution or an interface based solution based on solution choice and without requiring application changes for each.
This approach also makes HA transparent to the application when it does not have specific HA needs. The application can determine through service properties if the HA interfaces are supported, and have a consistent HA interface and semantic across the Framework and Services.

However, this approach requires the definition of new interfaces to be implemented by vendor products, since the interfaces do not exist in the current OSA specifications.

Role of Profiles

Today, vendors must provide ‘conformance guides’ that state what HA support is provided by their product, then provide another document that indicates which HA features are supported when combined with another product in a solution. Thus, every combination of products has a potentially different set of HA capabilities. This may be multiplied if a vendor supports multiple underlying technologies, such as a FT CORBA and non-FT CORBA offerings.

A profile would indicate what approach was implemented, which would allow products to be matched by profile to determine which would be interoperable. All profiles would be considered informative, they are not specifications.
If the following profiles are defined,

· FT-CORBA, Fault tolerant CORBA

· HA-CORBA, CORBA using Independent HA Interfaces

· SI-CORBA, (Single Instance) CORBA using non-HA semantics in services, and not implementing Independent HA Interfaces

· L-CORBA – (Legacy) CORBA, using HA semantics as defined in current services

Then products could be defined within profiles

· Service Product S1 – FT-CORBA profile

· Service Product S2 – HA-CORBA profile for Framework and Generic Call Control, SI-CORBA profile for Charging

· Service Product S3 – L-CORBA profile for Generic Call Control

Allowing application writers to create interoperable

Application Product A1, using FT-CORBA that would work with S1

Application Product A2, using SI-CORBA only that would work with S2 or L-CORBA
Application Product A3, using HA-CORBA Framework and Generic Call Control that would work with S2

Application Product A4, using HA-CORBA Charging that would work with S2, but without HA support (service interoperability without HA interface support)

Additional Detail on Use of Independent HA Interfaces

Independent HA interfaces are very much like Framework interfaces, they provide a supporting role to services and fill a middleware technology gap that can not be otherwise specified and be expected to be present in all solutions. Like some of the Framework interfaces, if an alternative implementation is supported between two products, the interface can be unimplemented, while the expected function is still present in the solution.

Many application platform products, those products offered by vendors that other application writers deploy their applications on top of, provide a high level interface for application writers to utilize key Framework services, while implementing the Framework at the middleware layer. Thus, applications can get service managers, but do not have access to integrity management or security directly. It is also possible to implement some of the current Call Control HA semantics in a similar manner.
By defining the HA functionality as additional interfaces, which may or may not be implemented, and that may be implemented in a platform middleware manner, this approach fits well with the Framework philosophy of providing essential function to ensure a suitable environment for the OSA interfaces, while keeping the function at the logically lower middleware layer where vendors can choose whether to deliver the function by product choice (like FT-CORBA) or interface.

This approach also makes redundancy transparent for all notifications in either direction, since the application / service does not need to implement specific semantics, it can rely on the underlying HA implementation for this support. It is applicable to HA support for sessions, notifications and default callbacks, for both the Framework and Services.
A short example will illustrate a typical scenario for an application deployed on an application platform, where the application platform provides the HA interface implementation. The application writer creates a triggered location notification with the location service, and provides the notification object that will receive the notifications. The underlying implementation in the application platform will create the notification registration with the location service, and will also create the HA backup for the notification using the HA interface. When the service delivers notifications, it will deliver the notification to the original destination, and if not available, use the backup provided. This example did not require the application writer to change the application interface or semantics (calling the create notification twice for example) to establish the primary and backup references, and the application would perform without change in a HA or non-HA configuration.
In summary, this approach is a workable, consistent, and non-invasive approach to providing High Availability support for OSA transparently through a middleware approach that keeps HA interfaces and semantics out of the application interfaces, while providing an easy migration path for existing applications that use current HA semantics.
Summary

Supporting a High Availability requirement in the OSA specifications does not necessarily mean that the API or semantics of OSA must change; this is one of at least three choices. In fact, using Profiles, more than one choice may be available to implementers.

There is broad agreement within the JWG that HA should be a middleware level function and that OSA applications should not need to deal with HA complexity, especially those applications that may not require HA. As the Framework is today largely composed of middleware layer features, the independent HA interfaces approach places HA squarely in this layer (between the protocol and the service/application), enhancing the overall solution while allowing substitution of other technologies at the vendors discretion.
